Lomadee, uma nova espécie na web. A maior plataforma de afiliados da América Latina.

sexta-feira, 7 de janeiro de 2011

Rede wireless

Introdução

O grande problema em utilizar cabos é que o custo do cabeamento cresce exponencialmente junto com o número de clientes e a distância a cobrir. Montar uma rede entre 3 ou 4 micros em um escritório acaba saindo barato, pois você precisa apenas de um switch e alguns metros de cabos, mas cabear uma rede com 500 estações, incluindo diversos andares de um prédio (por exemplo) acaba sendo muito caro. Além disso, uma rede cabeada oferece pouca flexibilidade; se você precisar mudar alguns micros de lugar ou adicionar novas estações à rede, vai precisar alterar o cabeamento.
Existem ainda muitas situações onde simplesmente não é viável utilizar cabos, como no caso de prédios antigos, onde não existem canaletas disponíveis e em situações onde é necessário interligar pontos distantes, como dois escritórios situados em dois prédios diferentes por exemplo, onde você precisaria adquirir uma linha dedicada entre os dois pontos, com a empresa de telefonia local (o que é caro) ou criar uma VPN, via internet (o que resultaria em uma conexão lenta e com muita latência).
Nos últimos anos as redes wireless caíram de preço e se tornaram extremamente populares. Configurar uma rede wireless envolve mais passos do que uma rede cabeada e um número muito maior de escolhas, incluindo o tipo de antenas e o sistema de encriptação a utilizar, sem falar no grande volume de opções para otimizar a conexão presentes na interface de administração do ponto de acesso.

A topologia básica

Em uma rede wireless, o hub é substituído pelo ponto de acesso (access-point em inglês, comumente abreviado como "AP" ou "WAP", de wireless access point), que tem a mesma função central que o hub desempenha nas redes com fios: retransmitir os pacotes de dados, de forma que todos os micros da rede os recebam. A topologia é semelhante à das redes de par trançado, com o hub central substituído pelo ponto de acesso. A diferença no caso é que são usados transmissores e antenas em vez de cabos.
5c32072a
Os pontos de acesso possuem uma saída para serem conectados em um hub/switch tradicional, permitindo que você "junte" os micros da rede com fios com os que estão acessando através da rede wireless, formando uma única rede, o que é justamente a configuração mais comum.
Existem poucas vantagens em utilizar uma rede wireless para interligar micros desktops, que afinal não precisam sair do lugar. O mais comum é utilizar uma rede cabeada normal para os desktops e utilizar uma rede wireless complementar para os notebooks, palmtops e outros dispositivos móveis.
Você utiliza um hub/switch tradicional para a parte cabeada, usando cabo também para interligar o ponto de acesso à rede. O ponto de acesso serve apenas como a "última milha", levando o sinal da rede até os micros com placas wireless. Eles podem acessar os recursos da rede normalmente, acessar arquivos compartilhados, imprimir, acessar a internet, etc. A única limitação fica sendo a velocidade mais baixa e o tempo de acesso mais alto das redes wireless.
Isso é muito parecido com juntar uma rede de 10 megabits, que utiliza um hub "burro" a uma rede de 100 megabits (um uma rede de 100 megabits com uma rede gigabit), que utiliza um switch. Os micros da rede de 10 megabits continuam se comunicando entre si a 10 megabits, e os de 100 continuam trabalhando a 100 megabits, sem serem incomodados pelos vizinhos. Quando um dos micros da rede de 10 precisa transmitir para um da rede de 100, a transmissão é feita a 10 megabits, respeitando a velocidade do mais lento.
Nesse caso, o ponto de acesso atua como um bridge, transformando os dois segmentos em uma única rede e permitindo que eles se comuniquem de forma transparente. Toda a comunicação flui sem problemas, incluindo pacotes de broadcast.
Para redes mais simples, onde você precise apenas compartilhar o acesso à internet entre poucos micros, todos com placas wireless, você pode ligar o modem ADSL (ou cabo) direto ao ponto de acesso. Alguns pontos de acesso trazem um switch de 4 ou 5 portas embutido, permitindo que você crie uma pequena rede cabeada sem precisar comprar um hub/switch adicional.
70598457
Com a miniaturização dos componentes e o lançamento de controladores que incorporam cada vez mais funções, tornou-se comum o desenvolvimento de pontos de acesso que incorporam funções adicionais. Tudo começou com modelos que incorporavam um switch de 4 ou 8 portas que foram logo seguidos por modelos que incorporam modelos com funções de roteador, combinando o switch embutido com uma porta WAN, usada para conectar o modem ADSL ou cabo, de onde vem a conexão. Estes modelos são chamados de wireless routers (roteadores wireless).
2928071e
O ponto de acesso pode ser então configurado para compartilhar a conexão entre os micros da rede (tanto os ligados nas portas do switch quanto os clientes wireless), com direito a DHCP e outros serviços. Na maioria dos casos, estão disponíveis apenas as funções mais básicas, mas muitos roteadores incorporam recursos de firewall, VPN e controle de acesso.
Por estranho que possa parecer, as funções adicionais aumentam pouco o preço final, pois devido à necessidade de oferecer uma interface de configuração e oferecer suporte aos algoritmos de encriptação (RC4, AES, etc.), os pontos de acesso precisam utilizar controladores relativamente poderosos. Com isso, os fabricantes podem implementar a maior parte das funções extras via software, ou utilizando controladores baratos. Isso faz com que comprar um roteador wireless saia bem mais barato do que comprar os dispositivos equivalentes separadamente. A única questão é mesmo se você vai utilizar ou não as funções extras.
Existem ainda roteadores wireless que incluem um modem ADSL, chamados de "ADSL Wireless Routers". Basicamente, eles incluem os circuitos do modem ADSL e do roteador wireless na mesma placa, e rodam um firmware que permite configurar ambos os dispositivos. O link ADSL passa então a ser a interface WAN, que é compartilhada com os clientes wireless e com os PCs ligados nas portas do switch. O quinto conector de rede no switch é então substituído pelo conector para a linha de telefone (line), como neste Linksys WAG54G:
m5ff0b2b5
Embora mais raros, você vai encontrar também roteadores com modems 3G integrados (chamados de Cellular Routers ou 3G Routers), que permitem conectar via EVDO (Vivo) ou UMTS/EDGE/GPRS (Claro, Tim e outras), usando um plano de dados. O modem pode ser tanto integrado diretamente à placa principal quanto (mais comum) instalado em um slot PC-Card. A segunda opção é mais interessante, pois permite que você use qualquer placa.
Dois exemplos de roteadores 3G são o Kyocera KR1 e o ZYXEL ZYWALL 2WG. Em ambos os casos os roteadores usam placas externas, que são adquiridas separadamente. O Kyocera suporta tanto modems PC-Card quanto USB, enquanto o ZYXEL suporta apenas modems PC-Card:
1e82e9c6
m318d3e76
Alguns modelos combinam o modem 3G e um modem ADSL, oferendo a opção de usar a conexão 3G como um fallback para o ADSL, usando-a apenas quando o ADSL perder a conexão. Esta combinação é interessante para empresas e para quem depende da conexão para trabalhar, mas resulta em produtos mais caros, que nem sempre são interessantes.
Continuando, além dos pontos de acesso "simples" e dos roteadores wireless, existe ainda uma terceira categoria de dispositivos, os wireless bridges(bridges wireless), que são versões simplificadas dos pontos de acesso, que permitem conectar uma rede cabeada com vários micros a uma rede wireless já existente. A diferença básica entre um bridge e um ponto de acesso é que o ponto de acesso permite que clientes wireless se conectem e ganhem acesso à rede cabeada ligada a ele, enquanto o bridge faz o oposto, se conectando a um ponto de acesso já existente, como cliente.
O bridge é ligado ao switch da rede e é em seguida configurado como cliente do ponto de acesso remoto através de uma interface web. Uma vez conectado às duas redes, o bridge se encarrega de transmitir o tráfego de uma rede à outra, permitindo que os PCs conectados às duas redes se comuniquem.
Usar um ponto de acesso de um lado e um bridge do outro permite conectar diretamente duas redes distantes, sobretudo em prédios diferentes ou em áreas ruais, onde embora a distância seja relativamente grande, existe linha visada entre os dois pontos. Como o trabalho de um bridge é mais simples que o de um ponto de acesso, muitos fabricantes aproveitam para incluir funções de bridge em seus pontos de acesso, de forma a agregar valor.
Fisicamente, os bridges são muito parecidos com um ponto de acesso, já que os componentes básicos são os mesmos. Em geral eles são um pouco mais baratos, mas isso varia muito de acordo com o mercado a que são destinados. A seguir temos o D-Link DWL-3150 e o Linksys WET54G, dois exemplos de bridges de baixo custo:
14544c4d
m13135166
Continuando, existe também a possibilidade de criar redes ad-hoc, onde dois ou mais micros com placas wireless se comunicam diretamente, sem utilizar um ponto de acesso, similar ao que temos ao conectar dois micros usando um cabo cross-over.
No modo ad-hoc a área de cobertura da rede é bem menor, já que a potência de transmissão das placas e a sensibilidade das antenas são quase sempre menores que as do ponto de acesso e existem outras limitações, mas apesar disso as redes ad-hoc são um opção interessante para criar redes temporárias, sobretudo quando você tem vários notebooks em uma mesma sala. Na época do 802.11b, as redes ad-hoc ofereciam a desvantagem de não suportarem encriptação via WPA, o que tornava a rede bastante insegura. Mas, o suporte ao WPA está disponível ao utilizar clientes com placas 802.11g ou 802.11n e pode ser ativado na configuração da rede.

Tipos de placas

Com relação às placas, é possível encontrar tanto placas PC Card, Express Mini ou mini-PCI, para notebooks, quanto placas PCI e USB para micros desktop. Existem inclusive placas ultra-compactas, que podem ser instaladas em um slot SD, destinadas a palmtops.
m25e7b3cf
86c98f4
Praticamente todos os notebooks à venda atualmente, muitos modelos de palmtops e até mesmo smartphones incluem transmissores wireless integrados. Hoje em dia, parece inconcebível comprar um notebook sem wireless, da mesma forma que ninguém mais imagina a idéia de um PC sem disco rígido, como os modelos vendidos no início da década de 80.
Apesar disso, é bastante raro um notebook que venha com uma placa wireless "onboard". Quase sempre é usada uma placa Mini-PCI (uma versão miniaturizada de uma placa PCI tradicional, que usa um encaixe próprio) ou Express Mini (a versão miniaturizada do PCI Express), que pode ser substituída, assim como qualquer outro componente. Desde que não exista nenhuma trava ou incompatibilidade por parte do BIOS, você pode perfeitamente substituir a placa que veio pré-instalada.
Existem vários modelos de placas mini-pci no mercado, mas elas não são um componente comum, de forma que você só vai encontrá-las em lojas especializadas. É possível também substituir a placa que acompanha o notebook por outro modelo, melhor ou mais bem suportado no Linux.
m52223225
2f1f10db
Não se engane pela foto. As placas mini-pci são muito pequenas, quase do tamanho de uma caixa de fósforos e os conectores a antena são quase do tamanho de uma cabeça de alfinete. Eles são frágeis, por isso é preciso ter cuidado ao plugá-los na placa. O fio branco vai sempre no conector no canto da placa e o preto no conector mais ao centro, como na foto.
Quase sempre, o notebook tem uma chave ou um botão que permite ligar e desligar o transmissor wireless. Antes de testar, verifique se ele está ativado.
Embora as placas mini-pci sejam componentes tão padronizados quanto as placas PC Card, sempre existe a possibilidade de algumas placas específicas não serem compatíveis com seu notebook. O ideal é sempre testar antes de comprar, ou comprar em uma loja que aceite trocar a placa por outra em caso de problemas.
As antenas não vão na própria placa, mas são montada na tampa do monitor, atrás do LCD e o sinal vai até a placa através de dois cabos, que correm dentro da carcaça do notebook. Isso visa melhorar a recepção, já que quando o notebook está aberto, as antenas no topo da tela ficam em uma posição mais elevada, o que melhora a recepção. Notebooks com placas 802.11b ou 802.11g utilizam duas antenas, enquanto os com placas 802.11n tipicamente utilizam três:
609cd504
Isso faz com que as placas Mini-PCI e Express Mini levem uma certa vantagem sobre as placas wireless PC Card ou USB em termos de recepção. As placas PC Card precisam ser muito compactas, por isso invariavelmente possuem uma antena muito pequena, com pouca sensibilidade. As antenas incluídas nos notebooks, por sua vez, são invariavelmente muito maiores, o que garante uma conexão muito mais estável, com um alcance muito maior e ajuda até mesmo na autonomia das baterias (já que é possível reduzir a potência do transmissor).
A exceção fica por conta das placas PC Card com saídas para antenas externas, como esta Senao NL-2511CD da foto a seguir. Ela é uma placa 802.11b, que era muito usada para fazer wardriving durante o boom inicial das redes wireless, quando a maioria das redes wireless ainda eram desprotegidas, ou utilizavam o WEP, que podia ser quebrado rapidamente. Hoje em dia ela não teria muita utilidade, já que está limitada a 11 megabits e não oferece suporte a WPA:
m40cbdec3
Muitos notebooks antigos, fabricados a partir de 2001/2002 que ainda não incluem placas wireless já possuem o slot mini-pci e a antena, permitindo que você compre e instale uma placa mini-pci, ao invés de ficar brigando com o alcance reduzido das placas PC Card:
557eb8c7
67985a6e
Temos em seguida as placas wireless USB, que devido à praticidade e baixo custo estão se tornando cada vez mais populares. O principal motivo é que elas são baratas e fáceis de instalar (já que basta plugar na porta USB) e você pode utilizar a mesma placa wireless tanto no desktop quanto no notebook.
m5835afe3
Existem tanto placas com antena interna, como este modelo da D-Link, quanto com antenas externas destacáveis, como no modelo abaixo. Nesses casos é possível inclusive substituir a antena por outra de maior ganho, melhorando a recepção e permitindo que você se conecte a pontos de acesso muito mais distantes:
1bf2546a
As placas com antena interna geralmente sofrem com uma recepção ruim, pois as antenas são, na verdade, simples trilhas na placa de circuito, que oferecem pouco ganho:
2e32b437
As com antena externa são melhores, já que antena oferece um maior ganho e você pode ajustar a posição da antena para obter a melhor recepção, mas é preciso tomar cuidado ou comprar, pois existem muitos casos de placas com antenas falsas, onde a antena externa é apenas um enfeite de plástico, que não é sequer conectado à placa. É o mesmo que acontece com muitos adaptadores Bluetooth.

Alcance e interferência

As placas Wi-Fi também são placas Ethernet. As diferenças com relação às placas cabeadas se restringem às camadas 1 e 2 do modelo OSI, ou seja na camada física (representados pelos transmissores e antenas) e link de dados (a modulação do sinal, encriptação via WPA ou WEP, correção de erros e outras funções executadas pelo chipset placa). Do nível 3 em diante temos o TCP/IP e as demais camadas da rede, que funcionam da mesma forma que em uma rede cabeada.
Com relação à transmissão dos dados, a principal diferença é que em uma rede wireless o meio de transmissão (o ar) é compartilhado por todos os clientes conectados ao ponto de acesso, como se todos estivessem ligados ao mesmo cabo coaxial. Isso significa que apenas uma estação pode transmitir de cada vez, e que todas as estações dentro da área de cobertura recebem todos os pacotes transmitidos da rede, independentemente do destinatário. Isso faz com que a segurança dentro de uma rede wireless seja uma questão sempre bem mais delicada que em uma rede cabeada.
O número máximo de clientes simultâneos suportados pelo ponto de acesso varia de acordo com o fabricante e o firmware usado. Muitos pontos de acesso 802.11b antigos eram limitados a 30 clientes, mas os atuais suportam um número maior. O grande problema é que a banda disponível é compartilhada entre todos os clientes, de forma que a velocidade prática da rede cai para níveis cada vez mais baixos conforme novos clientes são conectados.
Uma solução para áreas onde é necessário atender a um grande número de clientes é utilizar múltiplos pontos de acesso. Ao serem configurados com o mesmo SSID, eles formam uma única rede, de forma que os clientes passam a automaticamente se conectar ao ponto de acesso que oferecer o melhor sinal. Se o objetivo é melhorar a taxa de transferência da rede, o ideal é conectar os pontos de acesso usando cabos de rede e configurá-los para utilizar canais diferentes (veja detalhes a seguir), de forma que eles possam realmente transmitir simultaneamente, sem interferir entre si.
Em situações onde a prioridade é aumentar o alcance da rede, é possível também utilizar repetidores wireless, que permitem estender o sinal do ponto de acesso principal, sem que seja necessário puxar um cabo de rede até eles.
Outra característica das redes wireless é que o alcance da rede varia de forma brutal de acordo com os obstáculos pelo caminho e com o tipo de antenas usadas, entre outros fatores.
De uma forma geral, o alcance prometido pelos fabricantes para as redes 802.11b ou 802.11g são 100 pés para ambientes fechados e 500 pés para ambientes abertos, o que equivale a, respectivamente, 30 e 150 metros. Devido ao uso de mais transmissores e mais antenas, o novo padrão 802.11n oferece um alcance um pouco maior, prometendo 70 metros em ambientes fechados e 250 metros em campo aberto. Entretanto, estes valores são apenas médias estimadas, tiradas em testes padronizados. Em situações reais, podemos chegar a extremos, como links de longa distância, de 30 km e clientes que não conseguem manter uma transmissão estável com um ponto de acesso a apenas 6 ou 8 metros de distância.
Os três fatores que explicam diferenças tão brutais são:
a) O ganho das antenas instaladas no ponto de acesso e no cliente
b) A potência dos transmissores
c) Os obstáculos e fontes de interferência presentes no ambiente
As antenas usadas por padrão na maioria dos pontos de acesso, placas e notebooks são antenas dipole com ganho de apenas 2 ou 2.2 dBi, mas existem no mercado antenas com até 24 dBi. Existem ainda casos de antenas de uso restrito, que podem superar a marca dos 30 dBi de ganho.
O "ganho" da antena diz respeito ao quanto ela consegue concentrar o sinal transmitido. Quanto maior o ganho, mais concentrado é o sinal e maior a distância que ele consegue percorrer. Para efeito de comparação, uma antena de 22 dBi transmite um sinal 100 vezes mais concentrado do que uma antena de 2 dBi.
Em seguida temos a questão da potência dos transmissores usados nas placas e nos pontos de acesso, que é medida em milliwatts. Um ponto de acesso típico utiliza um transmissor de 56 milliwatts (17.5 dBm) ou de 63 milliwatts (18 dBm), mas o valor varia de acordo com o modelo e o fabricante (alguns modelos chegam a oferecer 400 milliwatts) e o sinal pode ser amplificado para até 1 watt usando um amplificador externo.
Usar uma antena de maior ganho tem um efeito similar a aumentar a potência de transmissão do sinal e vice-versa. É justamente a combinação do uso de antenas de alto ganho (em muitos casos combinadas com amplificadores) dos dois lados da conexão, com um caminho livre de obstáculos, que permite a criação de links de longa distância.
Por outro lado, em redes domésticas você raramente usa amplificadores ou substitui as antenas do ponto de acesso ou dos clientes e é quase impossível oferecer um caminho livre de obstáculos. Como o sinal wireless utiliza uma potência muito baixa, qualquer obstáculo significativo causa uma grande perda, o que nos leva ao outro extremo, os casos em que o sinal mal consegue percorrer uma distância de poucos metros.
As maiores inimigas do sinal são superfícies metálicas, como grades, janelas, portas metálicas, lajes, vigas e até mesmo tintas com pigmentos metálicos. O metal reflete a maior parte do sinal (propriedade que é explorada por muitas antenas), deixando apenas uma pequena parte passar.
Em seguida temos materiais densos, como concreto e pedra. Paredes leves, feitas com tijolo furado (tijolo baiano) absorvem muito menos sinal do que paredes de construções antigas, feitas com tijolos maciços, enquanto lajes ou vigas de concreto com armação metálica absorvem mais do que ambas. O efeito é cumulativo, de forma que quanto mais paredes pelo caminho, mais fraco é o sinal que chega do outro lado.
Outro obstáculo importante são corpos com grande concentração de líquido, como aquários, piscinas, caixas d'agua e até mesmo pessoas passeando pelo local (nosso corpo é composto de 70% de água). Ao contrário dos metais, que refletem o sinal, a água o absorve, o que acaba tendo um efeito ainda pior.
Além dos obstáculos, temos também focos de interferência, que competem com o sinal do ponto de acesso, prejudicando a recepção por parte dos clientes, assim como duas pessoas tentando falar ao mesmo tempo.
Fornos de microondas operam a 2.4 GHz, na mesma freqüência das redes wireless, fazendo com que, quando ligados, eles se transformem em uma forte fonte de interferência, prejudicando as transmissões em um raio de alguns metros. Um forno de microondas é justamente um transmissor de rádio, de altíssima potência, que opera na mesma faixa de freqüência das redes wireless, mas que serve para cozinhar alimentos ao invés de transmitir dados. Se você pudesse aumentar a potência de transmissão de uma placa wireless em 10.000 vezes, teria um forno de microondas portátil.
Este é um dos motivos para a existência de normas que limitam a potência de transmissão dos transmissores wireless domésticos a um máximo de 1 watt. No caso do forno de microondas, é usada uma grade de metal para evitar que o sinal de rádio escape. Ela é suficiente para evitar que ele cozinhe as pessoas em volta, mas uma pequena porção do sinal, mais do que suficiente para interferir com as redes wireless próximas, acaba escapando.
Telefones sem fio, além de transmissores bluetooth e outros aparelhos que operam na faixa dos 2.4 GHz, também interferem, embora em menor grau. Os telefones sem fio quase sempre utilizam o modo FH (Frequency Hopping), onde a freqüência de transmissão varia em uma sequência pré-definida, em intervalos de apenas alguns milisegundos. Com isso o telefone interfere com a rede em alguns momentos, quando as freqüências se cruzam (causando uma queda momentânea na taxa de transferência e algumas retransmissões de pacotes), mas raramente o problema é crônico. De qualquer forma, em escritórios e outros ambientes onde vários aparelhos de telefone sem fio precisarem conviver com a rede wireless, é recomendável utilizar aparelhos que trabalham na faixa dos 900 MHz.
Existe ainda a questão da interferência entre diferentes redes instaladas na mesma área. Imagine um grande prédio comercial, com muitos escritórios de empresas diferentes e cada uma com sua própria rede wireless. Os pontos de acesso podem ser configurados para utilizarem freqüências diferentes, divididas em 14 canais. Na maioria dos países, apenas 11 canais podem ser utilizados (devido à questão da legislação) e destes, apenas 3 podem ser usados simultaneamente, sem perdas.
Ou seja, com várias redes instaladas próximas umas das outras, os canais disponíveis são rapidamente saturados, fazendo com que o tráfego de uma efetivamente reduza o desempenho da outra.
A combinação de todos esses fatores faz com que o alcance varie muito de acordo com o ambiente. Você pode conseguir pegar o sinal de um ponto de acesso instalado na janela de um prédio vizinho, distante 100 metros do seu (campo aberto), mas não conseguir acessar a rede do andar de cima (a armação de ferro e cimento da laje é um obstáculo difícil de transpor). Para compensar grandes distâncias, obstáculos ou interferências, o ponto de acesso reduz a velocidade de transmissão da rede, como um modem discado tentando se adaptar a uma linha ruidosa. Os 54 megabits do 802.11g podem se transformar rapidamente em 11, 5.5, 2 ou até mesmo 1 megabit.
Uma última observação é que muitos pontos de acesso possuem problemas com a temperatura. Nos dias muito quentes, o ponto de acesso superaquece e o calor prejudica a recepção do sinal, reduzindo o alcance da rede, ou mesmo tirando-a do ar completamente. Ao desligar o ponto de acesso da tomada e ligá-lo novamente pouco depois, tudo volta a funcionar por um certo tempo, até que ele superaqueça e o problema se repita.
Se desconfiar do problema, experimente abrir o ponto de acesso e colocar um ventilador próximo a ele para refrigerá-lo. Se o sinal parar de cair, significa que o problema é mesmo a temperatura. Experimente então adaptar algum tipo de exaustor sobre o ponto de acesso. Como os pontos de acesso dissipam pouca energia (a maioria dissipa 5 watts ou menos), qualquer ventilação ativa é suficiente para resolver o problema.

Nenhum comentário:

Postar um comentário